Link to > CongregationData

Calculation of probable income loss by deaths

The standard life tables come in the form of "the number of persons surviving to exact age x out of 100,000 births". This is the second column in the table below, the first column being age.

The third column is the probability of surviving 5 years, computed as the number of survivors at Age+5 / survivors at Age. For example at age 80 the probability of surviving 5 years is Survivors(85)/Survivors(80)=56373/72308=0.779623.

The estimated income in five years as a % of current is then the sum of (%income in each age band) multiplied by the probability of surviving five years in the middle of that age band. Givers without ages are omitted, assuming that they are similarly distributed.

Age band

% income

% 5 year survival

Product (% income)

<50

10%

99.99%

10%

51-60

16%

98%

16%

61-70

23%

96%

22%

71-80

30%

88%

26%

>80

21%

61%

13%

Total

99%

87%

So for example the 30% of current income coming from those in their 70s can be expected to decrease to 26% of current income.

The estimated income in 5 years is then 87% out of the 99% from givers for whom we have ages or estimated ages, or 85% of current income from those givers. Assuming that those without ages given are similarly distributed, we should expect a 15% reduction in 5 years from deaths.

This is the giving profile. The blue curve is the distribution of planned givers, the red curve is the distribution of income, and the green curve is the most likely distribution of income in five years time.

WithFiveYearCurve.jpg

Repeating the procedure described above year by year for 20 years gives this curve

ProgressiveGiving.jpg

The data used follows:

Age

Survivors 1 year

Survival probability 5 years

0

100000

0.99482

1

99560

0.999106

2

99528

0.999327

3

99509

0.999437

4

99494

0.999508

5

99482

0.999558

6

99471

0.999598

7

99461

0.999628

8

99453

0.999628

9

99445

0.999608

10

99438

0.999547

11

99431

0.999437

12

99424

0.999286

13

99416

0.999105

14

99406

0.998924

15

99393

0.998783

16

99375

0.998682

17

99353

0.998621

18

99327

0.998601

19

99299

0.9986

20

99272

0.99857

21

99244

0.998549

22

99216

0.998508

23

99188

0.998468

24

99160

0.998397

25

99130

0.998336

26

99100

0.998264

27

99068

0.998173

28

99036

0.998071

29

99001

0.99796

30

98965

0.997838

31

98928

0.997675

32

98887

0.997522

33

98845

0.997329

34

98799

0.997125

35

98751

0.996881

36

98698

0.996616

37

98642

0.99632

38

98581

0.995983

39

98515

0.995615

40

98443

0.995205

41

98364

0.994775

42

98279

0.994292

43

98185

0.993777

44

98083

0.99323

45

97971

0.992651

46

97850

0.992018

47

97718

0.991353

48

97574

0.990643

49

97419

0.989889

50

97251

0.9891

51

97069

0.988266

52

96873

0.987334

53

96661

0.986282

54

96434

0.985057

55

96191

0.983647

56

95930

0.982029

57

95646

0.980219

58

95335

0.978266

59

94993

0.976177

60

94618

0.973937

61

94206

0.971552

62

93754

0.968983

63

93263

0.966128

64

92730

0.962914

65

92152

0.959263

66

91526

0.955051

67

90846

0.950212

68

90104

0.944653

69

89291

0.938303

70

88398

0.931073

71

87412

0.922917

72

86323

0.913731

73

85117

0.903415

74

83782

0.891767

75

82305

0.878537

76

80674

0.863488

77

78876

0.846303

78

76896

0.826714

79

74714

0.804521

80

72308

0.779623

81

69661

0.751884

82

66753

0.721361

83

63571

0.688128

84

60109

0.652382

85

56373

0.61439

86

52377

0.57468

87

48153

0.533923

88

43745

0.492925

89

39214

0.452491

90

34635

0.413426

91

30100

0.376312

92

25710

0.341579

93

21563

0.309512

94

17744

0.280207

95

14319

0.253789

96

11327

0.23007

97

8782

0.209064

98

6674

0.19059

99

4972

0.174377

100

3634

0.160429

101

2606

0.14812

102

1836

0.1378

103

1272

0.128931

104

867

0.121107

From Australian Life tables 2005-2007 © Commonwealth of Australia 2009 ISBN 978-0-642-74561-3

DavidMorgan Dec 2013

IncomeLossCalculation (last edited 2020-06-19 06:48:06 by DavidMorgan)